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ABSTRACT 

This paper reflects, from a computational perspective, on the experience gathered in designing and implementing real-
time control of the PALM-3000 adaptive optics system currently in operation at the Palomar Observatory.  We review 
the algorithms that serve as functional requirements driving the architecture developed, and describe key design issues 
and solutions that contributed to the system’s low compute-latency.  Additionally, we describe an implementation of 
dense matrix-vector-multiplication for wavefront reconstruction that exceeds 95% of the maximum achievable 
bandwidth on NVIDIA GeForce 8800GTX GPU. 
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1. INTRODUCTION 
Adaptive optics (AO) by its real-time nature entails fast response to wavefront changes.  For an AO system to work well, 
commands sent to actuators changing the surface of a deformable mirror (DM) to provide the necessary compensations 
must be computed while the aberrations are still small.  The primary goal in designing the PALM-3000 real-time control 
(RTC) algorithms is to achieve the highest possible control bandwidth, while assuring stability and robustness in a wide 
range of atmospheric conditions.  From the computational perspective, this implies lowest possible compute-latency.  
The aim of this paper is to reflect on key design and implementation issues encountered and the solutions developed that 
contributed to meeting the RTC computational requirements. 
 
The remainder of the paper is organized as follows.  The RTC algorithms that serve as functional requirements driving 
the architecture developed are first described in Section 2.  From there it will be evident that the matrix-vector 
multiplication (VMM) operation used for wavefront reconstruction is the computational bottleneck.  Section 3 presents 
the distributed multi-GPU architecture.  Section 4 provides the latency of each algorithm used.  Section 5 describes a 
GPU implementation of VMM optimized specifically for the RTC reconstructor size on the NVIDIA Compute-Unified-
Device (CUDA) architecture[1] and compares its performance to a leading method.  Section 6 concludes the paper.   

2. ALGORITHMS 
The PALM-3000[2,3,4] adaptive optics system which has been in operation on the 5.1 meter Hale Telescope at the 
Palomar Observatory since 2011[5], employs a 64x64 subaperture Shack-Hartmann high-order wavefront sensor 
(HOWFS) for measurement, and three adaptive mirrors for correction.  The mirrors include a tip/tilt mirror (TTM), a 
low-order deformable mirror (LODM) of 241 active actuators, and a high-order deformable mirror (HODM) of 3388 
active actuators.  The two DMs are operated in a woofer-tweeter configuration, with the LODM providing large stroke at 
low spatial frequencies (±2.5 μm surface stroke with 17 actuators across the telescope pupil) and the HODM providing 
fine correction at high spatial frequencies (±0.5 μm surface stroke with 64 actuators across the pupil).   

Figure 1 depicts end-to-end dataflow of the RTC with all computation steps used to convert pixel values from the 
HOWFS to commands issued to the DMs.  As shown, the raw pixels are read out in frames of 128x128 unsigned 16-bit 
values, background-subtracted and multiplied by the flat field before inputting to the current active centroiding algorithm 
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to obtain a vector of 8192 slope measurements or centroids.  Background subtraction, which compensates for the camera 
bias, sky background, and other additive flux, involves simply subtracting a background, or dark, value acquired with no 
guide-star light from each raw pixel value.   Flat-field correction, which compensates for individual pixel gain or QE 
variations in the wavefront sensor camera, requires only a multiplication operation per pixel. 
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Figure 1:  PALM-3000 Servo Control 

 

The centroid vector is computed with a weighted sum over the flat-fielded pixels, divided by the total light in the 
subaperture.  Equations below show the quad-cell centroiding algorithm used in the RTC.  Therein c denotes the centroid 
vector output, d the centroid offset vector, fmin the user-selectable minimum flux, g the weights +1,+1;-1,-1 and +1,-
1;+1,-1 for resolving x and y slopes, s the pixel values from flat fielding, i the index of subaperture, j the index of pixels 
within a subaperture, and N the total number of subapertures.   

Note the clamping of the denominator to fmin rather than zero.   The effect of this is to retain AO performance for the 
faintest objects rather than simply quitting.  This centroiding technique known as clamped denominator[6] along with 
reconstructor upgrades[7]  have shown performance improvements on sky when operating PALM-3000 on faint targets.  
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Next, the output centroid vector containing 8192 slope measurements (2 per subaperture) is multiplied with the current 
active reconstructor matrix to generate 4096 residuals that estimate the wavefront errors.  Of the 4096 residuals, only 
3388 values go to the HODM servo loop, 241 to the LODM, and 2 to the TTM, to generate the corresponding DM and 
TTM commands, with the remaining values available for diagnostics information. 

Computing the DM actuator command requires the previous timestep actuator command vector, the flatmap voltages to 
which we want the DM to relax in absence of an error signal, the current residual vector from the reconstructor, and two 
servo gain coefficients.  Computing a LODM actuator command requires an additional servo gain coefficient and the 
previous timestep LODM offload vector, which is the projection of the HODM onto the LODM calculated as the product 
of the HODM-to-LODM projection matrix and the HODM actuator command.   

Computing the TTM command requires four servo coefficients, the current residual value, the previous timestep actuator 
command, the previous timestep LODM offload vector, and the previous TTM offload vector which represents the 
projection of the LODM onto the TTM which is calculated by multiplying the LODM-to-TTM projection matrix with a 
LODM actuator command.   

The HODM-to-LODM and LODM-to-TTM projections are combined into one VMM operation of size 256x4096 with 
the estimated wavefront error vector.  Note since this operation is done after the actuator commands have been issued, its 
execution time is excluded from the total compute-latency of the system. 

 

Camera 
mode 

Pupil 
Sampling 

Available 
subapertures 

Nsub 

Illuminated subapertures (>50%) 

No 
obscuration 

Central 
obscuration 

0 64 4096 3145 2800 

1-3, 9 32 1024 792 704 

4-6, 10-11 16 256 200 176 

7-8, 12 8 64 52 48 

 

Table 1: Number of subapertures for various observing modes 

 

There are optimization techniques[8] that can be performed independent of architecture.  First, to minimize idle time, we 
overlap communication with computation, and ensure that the work done is evenly distributed across the system.  
Specifically, transfers of pixels are done via DMA in blocks of half-frames.  This permits calculations to start as soon as 
a block has been received and progress while the second half of pixels making up the frame is read out.  Section 4 
confirms the latency improvement expected of half-frame blocking.  This technique requires one buffer for calculations 
and at least another for transfers.  We allocate a ring of buffers for transfer to tolerate occasional jitters due to kernel 
preemption on standard (non-real-time) Linux.  Second, we exploit non-blocking communication.  That is, we issue 
multiple asynchronous sends and receives to allow simultaneous transmission and reception of data from multiple 
sources to multiple destinations.  To ensure load balanced, equal but different portions of data are calculated and 
transferred using the same number of instructions.  Toward this end, we divide and coalesce memory fragments, one 
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from each data product, so that every processing node makes the same minimum number of equal size DMA transfers.  
This data shuffling in memory is justified since memory bandwidth is orders of magnitude faster than communication 
bandwidth. 

Contrary to our stated goal of minimizing latency, the current version of the software receives and processes in half-
frames of 64x128 pixels each, regardless of the HOWFS camera mode currently operating.  It also multiplies the 
reconstructor with all subapertures whether illuminated or not.  Thus the vector of measured slopes output by RTC 
centroiding algorithms always contain 8192 elements, in spite of various observing modes with different number of 
subapertures (see Table 1).  Having said that, the number of elements actually computed does vary according to 
observing modes.  VMM is also currently done on dense 4096x8192 matrices, despite the total number of controlled 
actuators, not including those slaved electrically is only 3631 (3388 for HODM, 241 for LODM and 2 for TTM).   
Future versions will correct these issues. 

3. ARCHITECTURE 
 
This section presents the architecture of the PALM-3000 computer system and describes how the RTC algorithms are 
mapped and parallelized on the hardware adopted.  The RTC architecture is shown in Figure 2 along with external 
entities that use it.  The system consists of five major functional subsystems, RTC, AODD, AOCA, AODB, and GUI, 
that spread over three separate locations, the cass cage, the computer room, and the users/observing area, that in turn 
interconnect via 1Gbit Ethernet.  Non-critical or low speed data use this network, while real-time high-speed data go on 
the dedicated fiber link with direct point-to-point connections to the cass cage or via the Quadric switch.   
 
The cass cage holds the optics, DMs, TTM, HOWFS and all hardware that must absolutely be in proximity for proper 
operation such as motors, fiber optic receivers/transmitters, acquisition camera and a Linux PC that hosts the necessary 
device drivers.  The observing area, on the other end, represents the logical location of the users, which may be either 
operators and scientists that control the system via the graphical user interface software provided or external systems that 
interface with PALM-3000 such as TCS, Pharo or P1640. 
 
Shown in the center of the figure is the computer room that houses ten AO system PCs.  Nine computers named pc0 to 
pc8 run the RTC algorithms described, while the 10th named telem hosts the database (AODB) and command/automation 
(AOCA) subsystems.  All ten PCs are HP xw9400 running the standard RedHat Linux 2.6.18 kernel with two dual-core 
processors AMD Opteron 2220 2.8GHz, 128KB L1 cache and 1MB L2 cache per core, 4GB memory DDR2 667MHz, 
and two NVIDIA GeForce 8800GX GPUs of full PCIe x16 bandwidth.  Exceptions are pc0, which has only one GPU, 
and telem, which has 16GB of memory but no GPUs.  All PCs are linked via an ultra-low latency high bandwidth 
Quadrics switch that delivers over 900 MB/s of user-space-to-user-space bandwidth each direction for a total of 14.4 
GB/s of bisectional bandwidth and latency of only 1.8μs. 
 
Pixel values from the HOWFS camera are replicated by the optical splitter and sent to 8 processing nodes (pc1 to pc8) as 
they are read out.  Once one half of the pixels have been received, each GPU computes the same centroids and multiplies 
by a different portion of the reconstruction matrix to obtain a “half-computed” wavefront error (residual) vector for one-
sixteenth of the output actuators.  When this process repeated on the second half of the pixels making up the frame 
completes, the two half-computed residual vectors are summed and then transmitted to the central node (pc0).  Once all 
residuals have been received by pc0, the servo loop begins.  The servo algorithm computes the output actuator 
command, sends it off to the respective mirror, and then calculates the offload projections before repeating the loop on 
the next residual vector. 
 
pc0 additionally synchronizes and manages all traffic in and out of the eight slaves.  All messages are tagged with a 32-
bit control word containing a session number and a sequence number that uniquely identifies a message in that session.  
Sequence number 0 is reserved for messages containing commands and responses.  Each slave increments its own 
sequence number every time it sends out a new message containing data.  Pc0 uses the sequence numbers to identify and 
coalesce all residuals belonging to the same frame, provided that the data messages have the same current session 
number.  Otherwise, they are dropped which could happen when one slave detects a frame error and notifies pc0 quicker 
than others.  The session number, on the other hand, is incremented by pc0 and broadcasted to the slaves each time all 
synchronize in a rendezvous.  Slaves synchronize in a rendezvous only when commanded by pc0.  Otherwise they run 
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freely. even right after they have detected a hardware fault. All user coimnands from AOCA go through pcO which
parses them out to the slaves, waits for the results from each, and replies on their behalf before synchronizing in a
reiidezvous with all of them.
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Figure 2: PALM-3000 hardware architecture. HOWFS denotes the high-order wavefront sensor. HODM the high-order deformable
minor. LODM the low-order deforinable nm'ror. TIM the tip/tilt mirror. MOTOR all motors controlled. WLITE the white light
source. ACAM the acquisition camera. AODD the device drivers. AOCA the command and automation software. TELEM the PC
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All nine RTC computers log data directly to the RAID-0 system located on te/eiii via AODB. a publish-subscribe
software layer built ui-house from the ground up on top of Berkeley DB91 and used by all PALM-3000 software
coniponents for conununicatioii and database senices. To enable seamless distributed processing across maclimes, we
use bidirectional proxy coniponents that are interposed between user components and remote provider components.
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The RTC software implements the nesC[10] programming model extended with threads support.  In this model, lengthy 
operations and system services are performed in split-phase, i.e., using two functions, one called command which starts 
the operation and returns immediately, and the other, a callback, called event which indicates when the operation 
completes.  Since events represent typically hardware interrupts, they are assumed to execute quickly and can preempt 
one another.  In contrast, tasks run to completion and without strict timing requirements.  They do not preempt one 
another, but events can always preempt them.  As a deferred computation mechanism, tasks are posted (scheduled) for 
later execution more often from asynchronous events than from other scheduled tasks.  To drive multiple GPUs and to 
avail of the parallelism afforded by multiple CPU cores, we extended nesC with threads support.  Specifically, we 
introduced a mechanism for associating a nesC task with a thread of execution, which may be an existing thread or one 
newly created by the task scheduler.  We use threads like we use external hardware.  In this manner, threads signaling 
events are akin to hardware issuing interrupts.  Thus, events signaled and commands invoked by tasks associated with 
threads are declared asynchronous (i.e., async).  Additionally, we enhanced the language to allow more than one task to 
be posted in the same call for later execution, where any number of the tasks could be defined outside the current local 
scope (i.e., in other components, modules or processes).  We use this feature to synchronize and notify components of 
system-wide events.  One such event is application shutdown, which entails closing of all opened Berkeley DB handles.  
Lastly, we augmented the scheduler with prioritized task dispatching.  The same mechanism for associating a task with a 
thread of execution is used to set any task’s priority, including a pure nesC task.  We chose this approach to multithread 
support in order to retain the benefits of the static race-condition analysis feature of the language.  A problematic 
alternative would be to have applications interfaced directly to a thread library. 
 
The PALM-3000 software consists of programs that embody many of the TinyOS design patterns described in [11].   
Each of the programs is an assembly of components connected (“wired”) via named interfaces.  To ease usability, we 
engineered interfaces to contain only the minimum functionality required for most usage scenarios.  Configuration and 
customization functions were purposely excluded.  They are, instead, enabled only when needed at runtime via 
component-specific command lines switches, environment variables, and configuration files.  For example, on our 
system, components using the interface to subscribe to data deal only with one function, namely the callback, to receive 
the data.  There are no calls to make to initialize the providing component that implements the interface, change the 
subscribed data rate, or specify the location of the data server.  The interface simply does not require them.  This design 
approach has resulted in not only a system that is more extensible but also components that are simpler to develop. 
 

4. PERFORMANCE 
Figure 3 lists the execution times in microseconds, averaged over 1 million invocations ignoring the first, of each 
algorithm computed by the RTC as described previously.  It shows clearly the benefit of half-frame blocking over the 
obvious full-frame.  Measuring from the time the last pixel was received by the application up to the instant actual 
commands are ready to be issued to the mirrors, the total elapsed time is 205μs for half-frame blocking versus 281μs for 
full-frame.  Not included in these totals nor shown in the figure are the latencies of the inter-actuator check, the DM 
driver and the offload calculation that follows in parallel.  The inter-actuator check currently requires 35μs with room for 
improvement.  The DM driver’s latency at 125μs is expected to drop down to about 25μs later this year.  The offload 
latency of 80μs, which included 13μs for the launch overhead, is excluded from the total compute-latency because the 
calculation is started after the commands have been issued.  From the transfer times shown, it is clear that getting data in 
and out of GPUs is not of an issue, provided that the input and output buffers are allocated from non-pageable memory. 
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Figure 3: RTC latencies in microseconds. Shown is the processing timeline of the RTC servo algorithm for two frame periods at 2
KHz frame rate. Measuring from the last pixel received by the application up to the point actuator commands are ready to be issued to
the mirror, the total latency is 205ps for half-frame blocking and 2S 1 is for full-frame. Not included in these totals iior shown in the
figure are the latencies of inter-actuator check and DM driver. "Upload All' denotes uploading (GPU-to-host) of all data, which
include pixels, flux, centroids, and residuals. The transfer size equals the total divided by the number of OPUs in the system.

5. MATRIX VECTOR MIITLPLICATION

This section presents an unproved VvII5I algontllln used by the RTC. Figure 4 shows the core loop of the code on the
NVIDIA CLTDA architecture. Table 2 compares its performance with the leading method of Fujnnoto21. The times
shown were averaged over 1 million kernel invocations ignoring the first, for several matrix sizes of interest to PALM-
3000. excluding data transfers between CPLT and GPU and kernel launch overhead. The tin-cad blocks used for the
companson arc 16x4 for the PA[A1-3000 nietliocl and 16x16 as suggested for [12].

Matrix Size Fiqimoto RTC' Speedup

Table 2: Matrix-vector rnultiphcation performance
comparison. Speedup is the ratio of two times (Ls).

As shown, the performance of the RTC method oii small matrices is unmatched and due to the superior caching design
of the GPU texture memory. For a bandwidth-bounded algoritlun like VIVDvI. the execution time caii be prechcted by the
equation.

Bandwidth required
Time = Kernel launch overhead +

72GB,s

0 250 500 750 1000

READ FRAME: SOOus
HAl F-FRAME

LOAD 1st-HALF: lius
CENTROIDS (13+8): 2lus
RESIDUALS (4+61): 65us

LOAD Znd-I--IALF: ilus
CENTROIDS (4 8): l2us

RESIDUALS (4+61): 65us
UPLOAD ALL: 6us

SEND RESIDUALS: 4lus
COMMANDS(13+57): 7Ous

FULL-FRAME
LOAD FRAME: l5us

CENTROIDS (13+12): 25i.is
RES!DUALS (4+120): 124us

UPLOAD ALL: 6us
SEND RESIDUALS: 4lus

COMMANDS (13+57): 7Ous

p

I

-

I

256x4096 76 61 1.24
256x2048 40 32 1.25
512x4096 150 129 1.16
512x2048 $0 68 1.17
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Using our hardware/sothvare setup. the maximrun sustanied achievable bandwidth reported by bandwidth (an
application provided iii the N\IA software development toolkit) is 72GB/s. and the launch overhead 4ts if the kernel
is launched right after aiiother and 13is otherwise. For the matrix size of 256x4096 operated on by each GPLT. the RTC
algorithm attains over 95% of the maximum achievable memory bandwidth of the GeForce SSOOGTX GPU. providing
speedup of 1.24x. However, for large matrices such as 2048x4096 and 4096x4096 that are not of interest, the RTC
method is outnin by 10% to 15% respectively.

/1 Y=AX
7/ A : matrix in texture cache via texA
7/ X : vector in texture cache via texX
7/

// Number of threads: R x C per block
/1 Number of blocks: heihtA / R
/1 Thread id: tx. lv
7/ Block id: bx
II

shared float y[R][C];

row bx*R + ty;
y[ty][tx] = 0:

for (i = 0: i <widt1iA/4 i+ C)
{

fioat4 a = tex2D( texA. tx+i. row):
fioat4 x = texlDfetch( texX. tx+i):
y[ty][txl += a.xx.x + a.y*x.y + a.z*x.z + a.w*x.w

s'ncthreadsO;

/7 Y[row = surny[ty][*]) using binary reduction

Figure 4: Partial kernel codes for matrix-vector multiplication in RTC

6. CONCLUSIONS
We described the algontluns used for real time control of the PALM-3 000 adaptive optics system and presel1ted a
scalable architecture that satisfies its computational requirements. The key components we pointed mit that contributed
to the system's low latency were the optical splitter. the GPUs. and the Quadrics switch. With larger intercomiects and
additioiial if not faster GPUs. we expect the architecture could easily support much larger AO systems at luglier rates
and lower Vllv1 latency. We also presented an improved algorithm for matrix-vector multiplication oii the NVIDL&
CUDA architecture that reaches witlim 5°i of maximum achievable bandwidth aiid delivers speedup ranging from 1.1 6x
to l.25x over a leading method.
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