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ABSTRACT

Adaptive optics systems with Shack-Hartmann wavefront sensors require reconstruction of the atmospheric phase error
from subaperture slope measurements, with every sensor in the array being used in the computation of each actuator
command. This fully populated reconstruction matrix can result in a significant computational burden for adaptive optics
systems with large numbers of actuators. A method for generating sparse wavefront reconstruction matrices for adaptive
optics is proposed. The method exploits the relevance of nearby subaperture slope measurements for control of an
individual actuator, and relies upon the limited extent of the influence function for a zonal deformable mirror. Relying
only on nearby sensor information can significantly reduce the calculation time for wavefront reconstruction. In addition,
a hierarchic controller is proposed to recover some of the global wavefront information. The performance of these sparse
wavefront reconstruction matrices was evaluated in simulation, and tested on the Palomar Adaptive Optics System. This
paper presents some initial results from the simulations and experiments.
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1. INTRODUCTION

Many large ground based astronomical telescopes use adaptive optics (AO) systems to provide a real time wavefront
compensation for atmospheric turbulence. Adaptive optics uses a reference source to measure the wavefront information
and feedback to a deformable mirror (DM) for correction [1]. The nature of the atmospheric turbulence requires the
wavefront to be spatially sampled at sizes on the order of the coherent length of turbulence, which is about 30 cm for
near IR, and at speed much faster than the characteristic frequency of the turbulence, which is about tens of Hertz.
Current AO systems typically involve hundreds of actuators and system running at speeds of 300 – 1000 Hz. Future
large telescopes and the increasing requirements of current AO system will require significantly more actuators and
sensors as they will increase proportionally to the square of the telescope’s diameter.

Most high order AO systems use a Shack-Hartmann sensor which measures the slope of the wavefront across each
subaperture. The correcting wavefront phases at the DM actuator locations are estimated from the measured subaperture
slopes. In real time AO operation, the measured wavefront slopes, which are usually represented by centroid positions of
the reference source in each subaperture, are multiplied by a wavefront reconstruction matrix to calculate the desired
DM actuator positions. This reconstruction matrix is based on a weighted pseudo-inverse of the influence matrix from
actuator displacements to sensor measurements, and is in general fully populated. The entire sensor vector is therefore
required to give a good estimate of global wavefront error at any point. For an AO system with n subapertures across the
entire aperture the number of subapertures and DM actuators are of order n2. With 2 slope measurements from each
subaperture the number of multiply-accumulation calculations for each wavefront reconstruction is about 2n4. Since n
increases linearly with the telescope diameter D the computational burden for larger telescopes such as CELT [2] could
be unacceptable.
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One approach to reducing computation is based on using spatial Fourier transforms [3]; the resulting computations are of
order n2log(n) rather than n4 for the full matrix computation. A conjugate gradient approach can be used to solve the
problem iteratively retaining only sparse matrix operations, and using pre-conditioning to improve convergence [4]. More
general iterative approaches are briefly discussed in Hardy [1] and form the basis of the sparse matrix approach of
Wild [5]. Other sparse matrix approaches have also been suggested [6], however the reconstructors are not in general
optimal.

We have studied a sparse matrix method which exploits the relevance of nearby slope measurements for control of an
individual actuator, and relies upon the limited extent of the influence function for a zonal deformable mirror. Relying
on only the nearby sensor information can significantly reduce the calculation time for wavefront reconstruction.
However, with this local approach, performance on low spatial order modes suffers, and a hierarchic approach is needed
to recover global modes separately. The performances of these sparse wavefront reconstruction matrices were evaluated
in simulations and experiments on the Palomar Adaptive Optics System (PALAO). Detailed simulations of the localized
least square sparse matrices and hierarchic controllers have been done by MacMartin and can be found in reference [7].

This paper describes the local and hierarchic approach for sparse reconstruction matrices, presents experimental
evaluations of these sparse matrices obtained at Palomar Observatory, and compares the experimental results with the
analytical predictions [7]. In section 2 we will present a brief introduction of the sparse matrices theory. We then describe
our sparse matrices experiment using PALAO and present some of the results which characterize the performance of the
sparse matrices in section 3. We will also compare the experimental results with our simulation predictions. Finally, in
section 4 we will summarize our experience with these sparse matrices and discuss future development of our sparse
matrix technique.

2. SPARSE WAVEFRONT RESONSTRUCTION MATRICES

For a wavefront sensor which measures the subaperture wavefront slopes s, the influence of the phase from the DM
actuators w is defined by the geometric matrix A as

nAws += (1)

where n is the noise in the measurement. In absence of sensor noise, the reconstruction matrix A+ which is used in the
AO system to calculate the desired DM actuator positions from the measured wavefront slopes is the pseudo-inverse of
the geometric matrix A,

( ) sAAAsAw TT 1−+ == (2)

Although the geometric matrix A is sparse due to the localized influence of DM actuators the reconstruction matrix A+ is
in general fully populated. The physical interpretation of this is that the absolute displacement can only be estimated
from relative measurements by integrating those measurements to the boundary of the domain; given a slope between
two locations, one cannot determine whether a phase point is high or the other is low without considering the entire
domain.

Upon a close examination of the reconstruction matrix A+ one notices that the matrix components for each actuator are
dominated by the influence of slope measurements from nearby subapertures and the contributions from other
subapertures decline rapidly as the distance between the actuator and subaperture increases. This is because each DM
actuator has limited influence over the wavefront phase. A brute force approach to make a sparse A+ is to simply truncate
the matrix so that each actuator uses only the nearby subapertures and the contributions of the slope measurements from
other subapertures are discarded. This would significantly limit the number of non-zero components in the matrix. For a
regular discrete DM actuator and Shack-Hartmann subaperture layout the truncated reconstruction matrix has a banded
structure. This can be coded into the AO reconstructor by a suitable indexing scheme [8] so that instead of multiplying the
entire vector of slopes with the whole row of the matrix only the related slope values and matrix elements are used. In
this way the required reconstruction calculation is of order 2kn2 instead of 2n4. The constant k = d×d is the number of
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subapertures used for each actuators in the sparse matrix, which is only depend the size of local influence region d, and
unlike n, it does not increase with the diameter of the telescope D. By reducing the dependence of n to the telescope
diameter D from power of 4 to 2, the truncated sparse matrix can significantly reduce the reconstruction calculations for
large aperture telescopes. In principle, truncating A+ by zeroing elements corresponding either to distant sensors or to
those with small gain is unfavorable because the direct truncation does not optimize the local information for each
actuator. However, the reconstructor gain does decay with distance from the actuator, and thus the performance of
truncated reconstruction matrix, as will be shown in the next section, is still reasonable.

The optimal way to utilize the local wavefront slope information around each actuator is to reconstruct the phase for the
actuator using the slopes measured from the nearby subapertures using the least square method, an approach we call
“localized least square” (LLS) method. Like the truncated sparse matrix, the sparse matrix generated by the LLS method
has about 2kn2 non-zero components, but the LLS method provides an optimized estimation for each actuator using the
slopes from the d×d subapertures that surround the actuator. The performance degradation of this localized controller
relative to the global modes can be predicted by noting that the gain is a spatial high-pass filter with spatial frequency
response given by

( ) ( ) ( )dkdkkkg yxyx sincsinc1, −= (3)

Here kx=mxπ/D, ky=myπ/D (mx, my are integers) are the wave-numbers in two orthogonal directions, and thus the gain on
the lowest spatial frequency mode is g11 = sinc2(πd/D). Even for modest d/D there is a significant reduction in low
frequency gain. While the sparse reconstruction matrix maintains good performance on high spatial wave-number
modes, the gain is reduced on roughly the first (D/d)2 low wave-number modes which correspond to the global modes
with half-wave scale between d and D. The decrease in gain for the lower spatial wave-number modes has been observed
in the experiment.
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Figure 1. (a). (Left panel) Radially averaged spatial gains for a LLS and a truncated sparse matrix with d = 4. The gains are
normalized by that of the full matrix. (b). (Right panel) The close loop transfer function for a nominal, a decreased (by a
factor of 0.6), and an increased (by a factor 1.6) gain.

The spatial filtering behavior of the sparse reconstructors is shown in Figure 1(a) for both the truncated and LLS
reconstructors with local influence size d = 4. The gains are normalized by the full least square reconstructor and are
plotted as a function of spatial frequency. The LLS reconstructor deviates from the sinc2 prediction due to averaging
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over all modes with a given spatial frequency, however, the general trend can still be observed. The gain of both sparse
reconstructors is decreased for low spatial frequencies (global modes), which leads to a drop in the closed loop
performance for these modes. There is also an increase in the gain for certain characteristic modes, which is significantly
larger for the case of truncated reconstructors. The effect of the gain variations can be seen from the corresponding
transfer functions shown in Figure 1(b) which plots a nominal gain, a decreased gain, and an increased gain. This is the
expected closed loop decrease (or increase) in the amplitude of disturbances as a function of frequency. With the
nominally tuned gains for the PALAO system, then the -3 dB bandwidth is 13-15 Hz, and the peak of the sensitivity is
about 1.8 near 40 Hz. A reduction in gain corresponds to a reduction in the closed loop bandwidth, and a corresponding
decrease in performance. However, an increased gain, as evident at certain spatial frequency in Figure 1(a), can also be a
problem due to the increase in the amplification at frequencies above the bandwidth. If the nominal gain is chosen
correctly so as to minimize the overall performance, then any gain greater than unity will degrade performance. Thus,
although the truncated reconstructor has higher gains, it should result in lower performance for an optimally tuned
system.

A hierarchic approach can be used to recover global mode performance without losing the computational savings of the
localized controllers. Performance at low spatial frequencies can be improved by estimating the information that the
localized estimator does not by adding extra global reconstructions. This consists of three steps: (1) spatial filtering (e.g.
averaging over a region of several subapertures) of the sensor information and condensing into a reduced set of data; (2)
estimating global parameters from this condensed data, and (3) distributing these global parameters over the entire DM
to combine with the local estimations. Although it is not the only choice, the global parameterization we use is chosen to
be geometrically similar to that of the full problem, but with different spatial scale. By maintaining geometric similarity,
the same process can readily be repeated over multiple scales. A different control bandwidth could be obtained for
different spatial scales (e.g. to compensate for different disturbance covariance) by computing the control as the sum of
contributions from the different hierarchic layers. The computation burden for the hierarchic control will increase due
the extra layer(s) reconstruction calculation for the global modes. However, the condensed data set limits the number of
extra calculations to the order of 2(D/d)2. For the two-layers reconstructor demonstrated here, the hierarchic controller
scales as n8/3. In the limit of log2(n

2) layers one might expect the total hierarchic reconstruction calculation of about
n2log2(n), a scaling similar to that of FFT approach [3].

3. SPARSE MATRICES EXPERIMENTAL RESULTS

The Palomar Adaptive Optics system [9] has been used to test the sparse matrices described in above section. A facility
AO instrument for the Palomar 5-meter Hale Telescope, PALAO has a Shack-Hartmann wavefront sensor with 16
subapertures across the diameter of the telescope, a DM with 241 active actuators, and a fast steering mirror (FSM) for
overall tip-tilt correction. Both the subapertures and actuators lie in a square grid with 4 DM actuators at the corners of
each subaperture in the standard Fried geometry. An infrared camera system, the Palomar High Angular Resolution
Observer (PHARO), provides IR imaging and coronagraph for PALAO. PALAO became a facility instrument in May of
2000 and the system routinely achieves Strehls of 50 – 60% (in K band), thus providing a good testbed for AO technique
development.

In our sparse matrices experiment all three types of sparse matrices discussed in section 2, including truncation of a full
least square matrix, localized least square, and a hierarchic reconstructor, were tested. We tested both truncated and LLS
sparse matrices with influence regions varying from d = 2 (i.e. each actuator is driven by 2×2 subapertures), which is the
sparsest, to d = 12. The truncation sparse matrices were generated from a full least square reconstruction matrix. We
tested one hierarchic matrix which was constructed with a d = 4 LLS method with an additional global mode
reconstructor which senses low order modes on 4×4 points over the entire aperture. During tests each sparse matrix as
well as the full least square reconstruction matrix was sequentially loaded into the PALAO’s wavefront reconstructor
and then the AO loop was closed. Wavefront sensor data was recorded for about 60 seconds and three PHARO K band
images were taken. The recorded wavefront sensor data includes status of DM and FSM loops, subaperture centroids,
subaperture fluxes, FSM positions and residuals, and DM actuator positions and residuals. The PALAO system update
rate is 500 Hz and the telemetry recorder can sustain a recording rate of 100 Hz, i.e. every 5th frame of data. The sparse
matrices have been tested both on bright (MV < 6 mag.) and faint stars (MV > 8 mag.) as well as under different
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atmospheric seeing conditions. In the experiment, although many elements of the sparse matrices are zeros, the matrices
were still maintained in the full matrix format, loaded into the wavefront reconstructor as a regular matrix, and the
reconstructor still performed the full matrix calculation. This did not take the advantage of computation savings of the
sparse matrices and the number of reconstruction calculation remained the same. However, experiments in this fashion
allow us to directly compare the performance of the sparse matrices. Because the experiments have tested the
performance of the sparse matrices under real atmospheric turbulence the recorded real time wavefront data have
provided us with detailed information on wavefront error’s spatial and temporal properties for different reconstruction
matrices. Analysis of data has shown that the performance of sparse matrices behaved similarly for both bright and faint
stars, though the AO system tends to have larger residual wavefront errors due to the lower signal-to-noise ratio (SNR).
To illustrate the difference between the sparse matrices and to distinguish the characteristics of the sparse matrices we
use the result from a bright star (SAO64701, a MV = 5.9 K0 star) in this paper.

0 2 4 6 8 10 12 14 16
200

250

300

350
Total RMS Wavefront Errors

Size of Influence Region (subaperture)

W
F

E
 (

nm
)

Data: LLS        
Data: Truncate   
Data: Hierarchic 
Model: LLS       
Model: Truncate  
Model: Hierarchic

Figure 2. Experimental and model predicted rms residual wavefront errors versus matrix sparseness. The wavefront error is
in unit of nm and the subaperture influence size d is in unit of subaperture. The WFE uncertainty estimated from the
fluctuation of Strehls is about 20 nm.

Figure 2 shows the rms residual wavefront errors for the AO closed-loop performance using different sparse matrices.
The residual wavefront error is calculated from the recorded wavefront sensor data and the PHARO images. For each
sparse matrix the closed-loop residual wavefront σ comes from two sources: (1) the AO system error σsys which is the
sum of errors from the servo time delay, residual tip-tilt, DM fitting, DM registration, non-common path calibration, and
wavefront sensor measurement error [9]. This part of the error is estimated using the Strehl ratio from the PHARO images
taken when the PALAO is closed loop with the full matrix; and (2) the error caused by the sparse matrix σsparse which is
calculated from the recorded wavefront sensor slopes when the AO loop was closed by a sparse matrix as,

( )
∑

−
⋅=

j act

Sparse
j

Full
j

sparse n

aa
2

2 4σ (4)

where nact is the number of actuator, and the factor of 4 is added in Eq. 4 to account for the DM reflection. The aj
Full and

aj
Sparse are the reconstructed DM actuator positions in microns from the recorded closed-loop slopes sSparse using full

matrix A+
Full and sparse matrices A+

Sparse correspondingly, i.e.
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Eq. 4 and 5 calculate the wavefront error caused by the matrix sparseness by calculating phase difference between the
reconstructions of a full matrix and the sparse matrix. In Figure 2 the sparse matrix closed-loop wavefront error
σ = (σsys

2+ σsparse
2)1/2 is plotted against the sparseness of the matrices which is indicated by the subaperture influence

region size d. The plots show errors from sparse matrices generated in all three approaches as described in section 2. We
can see from the plot that the wavefront error increases as the reconstruction matrix become sparser. However, there is
little difference between the truncation, LLS, and hierarchic controller. The remaining difference between the truncation
and LLS WFE curves are mainly due to the fluctuation of full matrix PHARO image Strehls which have been used to
calculate the system error. The WFE fluctuation is estimated form the fluctuation of Strehls to be about 20 nm. The plots
show that AO system error is the dominant component error until sparseness is d ≤ 4. This is also reflected in the Strehl
ratio plot shown in Figure 3. Figure 2 also plots the predicted wavefront error from the simulations conducted for various
reconstructors in order to compare the predicted performance with the experimental results. The simulations use open
loop telemetry data recorded during the experiments with the FSM (tip/tilt) loop closed and the DM loop open. Because
the telemetry data are recorded only at 100 Hz, the data are interpolated for simulation. As a result, there is no excitation
above the Nyquist frequency of 50 Hz in the simulation and thus, recalling Figure 1(b), the simulation will predict better
performance than it should, particularly for case of increases in the loop gain. Thus while we expect the local least
squares solutions to outperform the truncated sparse matrices, the simulation predicts the opposite. Other than that, the
plots show that the experimental data and simulation prediction agree very well.

Using the calculated residual wavefront errors we can predict the final image’s Strehl ratio. The predicted Strehls and the
real Strehls from the PHARO images for each sparse matrix are shown in Figure 3. The figure shows that within the
fluctuations of data the predicted Strehls in general agrees with the real image.
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Figures 2 and 3 have not shown a difference in performance between the truncation, LLS, and hierarchic control
matrices. However, as shown in Figure 4 and 5, more detailed analysis of the recorded wavefront sensor data does show
that there are distinguishable differences.

As mentioned in section 2, because the sparse matrices reconstruct the wavefront from local information, correction of
the low spatial frequency modes will be degraded. This effect can be seen in the recorded DM residuals, which are the
closed-loop DM actuator update values (i.e. centroids multiplied by the reconstructor). Figure 4 shows the spatial power
spectral density (PSD) of the DM actuator residuals for the LLS matrices with different sparseness as well as the
hierarchic controller. The PSDs shown in the upper panel are radially averaged in each frame and time averaged over 10
second of recorded data. To better see the effect of sparseness of the matrices, the plots in the lower panel are the
normalized PSDs which are normalized by the full matrix PSD.
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Figure 4. Closed-loop DM residuals PSD. Upper panel: DM actuator residuals PSD. The spatial frequency is in unit of
cycle across the pupil. Lower panel: Normalized PSDs. The normalization is done by the PSD of the full matrix.

Figure 4 shows that as the influence region size d decreases there is less power in the DM residuals at low spatial
frequencies, indicating a loss of low spatial order information in the reconstruction. Also, the normalized plots show that
for different influence size d the PSD peaks at different spatial frequency. This indicates that the sparse matrix not only
loses the gain for lower order modes but also increase the gain at certain characteristic frequency. This phenomenon
agrees with our theoretical predictions shown in Figure 1. In contrast the DM actuator residuals from the hierarchic
controller do not lose much power for the low order modes. Although it has local influence size of d = 4, compared to
sparse matrix with the same influence size (the curve with connected squares), the global reconstruction layer in
hierarchic controller has recovered most of the gain for the low order modes (the curve with connected diamonds). The
DM actuator residuals PSD for the truncation sparse matrices are similar to that shown in Figure 4.

Proc. of SPIE Vol. 4839     1041



10
−1

10
0

10
1

10
0

10
2

10
4

10
6

10
8

10
10

WFE PSD:  Full

Frequency (Hz)

W
F

E
 P

S
D

 (
µm

2 /H
z/

C
yc

le
)

1 cycle
2 cycle
3 cycle
8 cycle

10
−1

10
0

10
1

10
0

10
2

10
4

10
6

10
8

10
10

WFE PSD:  d = 4

Frequency (Hz)

W
F

E
 P

S
D

 (
µm

2 /H
z/

C
yc

le
)

10
−1

10
0

10
1

10
0

10
2

10
4

10
6

10
8

10
10

WFE PSD:  d = 2

Frequency (Hz)

W
F

E
 P

S
D

 (
µm

2 /H
z/

C
yc

le
)

10
−1

10
0

10
1

10
0

10
2

10
4

10
6

10
8

10
10

WFE PSD:  d = 4 (Hierarchic)

Frequency (Hz)

W
F

E
 P

S
D

 (
µm

2 /H
z/

C
yc

le
)

Figure 5. Temporal PSD for the closed-loop wavefront error under different sparse matrices. The temporal PSD is
calculated for each spatial frequency and a few selected spatial frequencies are presented and indicated by different line
styles. The influence size d of sparse matrix is shown in the title of each panel. To reduce the scattering and make the plots
more readable the plots are smoothed for the points with frequency higher than 0.1 Hz.

Besides the PSD of DM residuals we have also looked into the spatial and temporal properties of the closed-loop
wavefront errors under the sparse matrices. From the recorded centroid data the wavefront errors are reconstructed using
the full matrix. The spatial PSD is then calculated for each frame and radially averaged. Then the temporal PSDs are
calculated for each spatial frequency PSD over the 40 seconds of data. Plots in Figure 5 shows the temporal PSD for a
few selected spatial frequencies. The temporal frequency ranges from 0.025 to 50 Hz, determined by the data-recording
rate of 100 Hz and data length of 40 seconds. Each panel shows results from a sparse matrix with influence region size d
indicated in the title of the plot. For a comparison, data from the full matrix is also shown in the upper left panel. As the
matrix becomes sparse the low spatial order (1 – 2 cycles) wavefront error power increases, especially for the case of d =
4 and d = 2. For the case of d = 2, one can even argue that the cutoff frequency for the low spatial mode (1 cycle) has
also been pushed lower to less than 10 Hz compared with the full matrix case. Again the recovery of global modes by the
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hierarchic controller has maintained the power of low spatial modes, providing a performance close to the full matrix
case (lower right panel). The temporal PSDs for the truncation sparse matrices have the similar features shown in
Figure 5.

4. CONCLUSIONS AND FUTURE WORK

Real time wavefront reconstruction for future large aperture ground-based telescopes has posed a big challenge on real
time computation for AO’s wavefront reconstructor. We have proposed an approach to reduce the fully populated
reconstruction matrix to a sparse matrix with a banded structure based on the limited influence of the DM actuators.
Experiments and simulations have shown that as the matrix sparseness increases the accuracy of the wavefront
reconstruction degrades. This has been understood to be caused by the loss of the global mode information. The loss of
the lower mode gain in the controller can be predicted. The remedy for this is to add an extra layer of wavefront
reconstruction from a much reduced sensor data set to sense only the low order modes. This hierarchic control method
has shown to provide much better wavefront reconstruction without much increase of the calculation burden to the
reconstructor (scaled as n8/3 for the two-layer controller and ~ n2log2(n) for multi-layer controller). Both simulation and
experiment have proved its effectiveness.

The successful generation and implementation of all the sparse matrices, especially the hierarchic controller, have
validated our models and simulations. The experimental data have agreed with simulation predictions. The modeling and
simulation can provide a crucial tool in the design of sparse matrices for the future AO systems. The experiment on
PALAO has been a critical step for us to understand the behaviors of these sparse matrices and will continue to provide
the excellent testbed capabilities for the evaluation of new generation sparse matrices.

Sparse matrices tests on PALAO have shown that with the exception of extremely sparse matrices (d <= 4) the
dominant limitations of AO performance are still the AO system errors such as calibrations. The decrease of the closed-
loop Strehls of images is not significant for the moderately sparsed matrices. Another observation from the experiment is
that although in principle the truncated sparse matrices are not optimal compared with the localized least square
matrices, the experiment data have shown little difference, which is contradicted to the predictions from model. One
speculation is that it was caused by the imperfect gain tuning for the sparse matrices.

The modeling and experimental studies on the sparse matrix technique are still ongoing. We plan to study how to
optimize the matrix sparseness taking into account the decreased computation delay together with the seeing condition.
The matrix sparseness and the servo time delay are related variables in the system design. A sparser matrix requires less
reconstruction calculations which will reduce the servo time delay, but will also introduce more wavefront errors. For
any given AO system and atmospheric conditions there should be an optimal sparseness for the system. A realistic model
will allow us to find this optimal solution. Another issue is to understand the performance of the sparse matrices on the
laser guide star (LGS) AO system. Characteristics of LGS such as non-uniform sensor gain across the pupil may
complicate the problem. Other approaches, such as variable influence size may need to be implemented to accommodate
it. Finally, so far we have used only the least square method for the wavefront reconstructions in our sparse matrices
experiment. When the guide star is faint the least square solution may not be optimal. An optimal sparse estimator may
provide a better solution for the faint guide star.
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