Palomar Laser Guide Star
Adaptive Optics

Antonin Bouchez & Mitchell Troy
John Angione, Rick Burruss, John Cromer, Richard Dekany, Steve Guiwits,
John Henning, Jeff Hickey, Ed Kibblewhite, Anna Moore, Jean Mueller,
Hal Petrie, Jennifer Roberts, Chris Shelton, Bob Thicksten, Thang Trinh,
Tuan Truong, Viswa Velur

September 14, 2006
Predicted LGS AO performance

• The observed Strehl can be decomposed into
 – High-order LGS Strehl
 • Function of laser power, Sodium density, laser spot size, seeing and telescope elevation
 – Tip/Tilt (TT) Strehl
 • Function of seeing and TT star magnitude
 – Anisoplanitism Strehl
 • Function of seeing and the distance between the TT GS and science object

• The observed Strehl is the product of these three quantities

• Predictions are based on (and roughly agree with)
 – High order LGS correction from 4 hours of observing on one night
 – Low order correction on 3 stars on one night
Predicted High-Order Strehl Reduction

- Future improvements should improve laser return by a factor of 2-4 over our September 2006 results.
Predicted TT Strehl

- In 1.0 arcsecond seeing, a 50% Strehl reduction occurs with a V=14.5 star.
- Future improvements should improve performance by ~2 star magnitudes
Anisoplanatism

- Used average C_n^2 from Palomar MASS/DIMM in this calculation
Shared Risk Science (07A)
(Feb. 19th – July 31st)

- We can support 10 nights of Shared Risk science for LGS observations in 07A.
- All LGS science nights will be preceded by 2 or more engineering nights.
- During 07A there will be a total of 3-4 LGS science runs with each run being 2-3 science nights long.
- The AO team lead will have the authority to preempt/delay science as needed to debug/understand system performance.
- All data taken during the run is available to the engineering team (for engineering purposes only).
- All proposals should:
 - Meet the proposal guidelines (see next slide)
 - Have an NGS AO backup program
 - Be reviewed by the Palomar AO team for technical feasibility
Shared Risk Guidelines

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Restriction</th>
<th>Demonstration as of 9/14/2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT Ref. magnitude</td>
<td>$V > 17.0$</td>
<td>$V = 16.6$ (TT only)</td>
</tr>
<tr>
<td>TT Offset</td>
<td>≤ 60 arcsec from science object, with some PA restrictions</td>
<td>Yes, with natural guide stars</td>
</tr>
<tr>
<td>Nodding</td>
<td>Supported in 5 arcsecond steps</td>
<td>2 arcsecond steps</td>
</tr>
</tbody>
</table>

- The above will require significant modifications to suppress Rayleigh scatter contamination in the LOWFS
 - These changes are planned for implementation before the start of the 07A semester
Shared Risk Guidelines (Con’t)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Restriction</th>
<th>Demonstrated as of 9/14/2006</th>
<th>Work needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescope pointing</td>
<td>Elevation > 30 Deg. and Dec. <65 Deg.</td>
<td>BTO has been demonstrated > 45 Deg el.</td>
<td>• Re-calibrate BTO over larger region
• FAA Approval</td>
</tr>
<tr>
<td>Spectroscopy and Coronagraphy</td>
<td>Supported, but no additional flexure compensation</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Exposure length in PHARO</td>
<td>Limited by non-common path flexure, estimate 120 sec.</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>Overheads</td>
<td>• 1 hr start of night
• <20 min acquisition per target</td>
<td>Both have been demonstrated</td>
<td>Improve automations</td>
</tr>
</tbody>
</table>
Summary

• We have achieved high-order correction using a LGS.
• We have shown the current performance and predicted performance for various observational scenarios
• We are happy to be able to offer shared risk observing in 07A